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THE ASYMPTOTIC FORM OF THE STATIONARY SEPARATED CIRCUP~FLUENCE OF A BODY AT 

HIGH REYNOLDS NUMBERS* 

S.I. CHERNYSHENKO 

An asymptotic theory of the stationary separated circumfluence of bodies 

at high Reynolds numbers, Re, is constructed. It is shown that the 

length and width of the separated zone (SZ) is proportional to Re and 

that the drag cofficient is proportional to Re-'. A cyclic boundary 
layer is located around the separated zone with a constant vorticity. In 
the scale of the body, the flow tends towards a Kirchhoff flow with a 

velocity on a free line of flow of the order of Re-'1% which satisfies 

the Brillouin-Villat condition. 

A review of the attempts which have been made to describe the two- 

dimensional separated circumfluence of a body at high Reynolds numbers is 

given in /l, 2/. Certain features of the asmyptotic structure of the 

solution based on qualitative arguments were pointed out in /3, 4/. The 

corresponding shape of the separated zone was calculated in /5/. However, 
no complete theory was constructed in these papers. The appearance of the 

numerical calculations in /6, 7/ stimulated further investigations and a 

model with a non-zero jump in the Bernoulli constant on the boundary of 

the separated zone was proposed in /0/. A number of hypotheses concerning 

the limiting structure of the flow were put forward in /9/. 

In the solution obtained below the flow in the scale of the body is 
described as in /l, 2/ but the velocity is of the order of RedA. The 

flow characteristics in this zone are correspondingly renormalized. The 
flow in the scale of the separated zone corresponds to the assumptions 

made in /3, 4/. Unlike in /l-4/, the flow in the scale of the body is 

not directly combined with the flow in the scale of the separated zone. 

There are several embedded zones and the possibility of uniting these 

ensures the selfconsistency of the expansion. Moreover, the cyclic 

boundary layer on the boundary of the separated zone plays an important 

role. 

1. Let us transform to dimensionless variables by employing the characteristic size of 

the body and the velocity at infinity as the scales. As Red x), let the length and width 

of the separated zone tend to infinity while remaining of the same order. Then, in the limit, 

the flow in the scale of the separated zone will be a vortex potential flow /lo/. According 

to the Prandtl-Batchelor theorem, the vorticity is constant in the detached domains iFig.1). 
.- 
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Outside of these zones, the flow is potential. There may be a tangential discontinuity on 

the boundary of the vortex zones. The jump, A, in the Bernoulli constant on this discon- 

tinuity must be determined from an analysis of the cyclic boundary layer. This layerdevelops 

along the discontinuity from the point A to the point B, turns round in the neighbourhood of 

B and moves from B to A along the axis of symmetry. Close to A, it again turns round and, on 

becoming adjacent to the approach stream, again moves towards B. The velocity profile in the 

boundary layer does not change during these rotations. The corresponding boundary value 

problem has been posed in /ll/. 
Let us introducethelongitudinal and transverse coordinates s and n (Fig.11 in the cyclic 

boundary layer and let us denote, by u (s) the velocity of the vortex potential flow on 

the internal boundary. In the case of the function g = 'i,(u2- U2) - A, where u is the 

velocity along the s-axis in the boundary layer, the boundary value problem in Elieses' 

variables is: 

(II, is the stream function). 

the leading terms as Re-t 00 

of the boundary value problem 

s=o,11,<o,g=o (1.2) 
4’ > 0, g (0749 = g @A? $) (1.3) 

9 = 0, sg < s < S-L, agiaq = 0 fl.4) 
q -+ +w, g-t -A = const (1.5) 

The variables are normalized on the initial scales buy only 

are retained in the equation. An analysis of the properties 

(l.l)-(1.4) provides us with grounds for supposing /12/ that 

its bounded solution as J‘*cQ is unique, while condition (1.5) enables us to determine A. 
A proof of this uniqueness is given below for the actual case being considered. The solution 

itself is obvious: g 5 0. Consequently, A = 0 also. This means that the model in /S/ is 

wrong. 

Theorem 1. The system of Eqs.(l.l)-(1.4) with the additional condition that g- const 

as $--++cG has a unique solution g = 0, const = 0. 

Proof. Let us suppose thatthe opposite is true. The properties of the function u (s, 9) 
which are necessary for the general theorems used in the proof to be applicable follow from 

the physical meaning of the problem under consideration. In (l.l), we shall subsequently 
assume that u>O and that it is an arbitrary, smooth, bounded and known function. Then, 
Eq.cl.1) is linear with respect to g and, without any loss in generality, it may be assumed 

that g-1 as $ -, -+zn. 

Let us prove that g(s,Q),< 1. We shall supplement the definition of g(s,$) when sa < 
s < 8.4 .for 9 < 0 by putting g (s, -9) = g(s,g), u (s, --I#) = u (s,$). 

Let s and II, exist such that g(s,$)> 1. Then, g (s, $) attains an absolute maximum at 
a certain point s,,, %* By virtue of (1.3), it may be assumed that &n > 0 without any loss 
of generality. Then, by selecting a sufficiently small S>O and a sufficiently large M, 
we obtain that s,---<ssss, in the domain lll,I<MM, which contradicts the general 
principle of a maximum (Theorem 1 from Sect.1 in /13/J. Consequently, g< 1. 

Let us prove that g(s,$)< 1. In order to do this, we repeat the previous argument, 
making use of the fact that g(s,$),< 1 and the reinforced principle of a maximum (Theorem 
6 from Sect.1 in /13/J. By assuming that g(s,$) = 1 at a certain point, we obtain that g= 1, 
which constradicts the boundary condition g(O,$) = 0 when 11<0. 

Let us now consider the domain $> N>O. According to what has been proved, g(s,N)< 
1 and it follows from the continuity of g(s,N) that there exists an 
N) < 1 - e. When 

s>O such that g (ST 
9 > N, by virtue of (1.3), the function g(s,$) can be periodically 

extended with respect to s on the whole of s. When $ > N, let us consider a function 

Y (ST 9) which is such that Y (s, $) satisfies Eq.(l.l), Y (0, ‘b) > g (0, ‘i’)x 
q,) -+ const 

y (s, N) = 1 - E, y (0, 
when $-> X1. 

When s>o, the function y(s,$) dominates g(s,+): y > g. Let us show that Y ($7 44 - 
I-E when s--t co, $ = const. We put Y (s, 0) = 1 - s + Y, (s, $9 and extend y,(s,$) unevenly 

equation yl,' =. U,Yi*y, 

into the domain $< N: y,(s,v - N) = -,y,l,p $;$. Then and E +(s,$) will be a solution of the 
where u1 = u I is an even function with respect to 

N. 

Then, 
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Consequently, the function Z(S)> 0 decreases 
monotonically and this means that it tends to a certain 
limit. Hence, Y&4 - 0 when s- cc and y, -, k,$ + 

the function Yl (s, $) is bounded. This 
means that k, = 0 and, since Yl (SF N) = 0, then 

NOW, from the inequality g (s, $) < Y (S! 9) 
c when s--t=, we obtain g (s, $)< 1 - E. This con- 

tradicts the initial assumption that g (s,$) 3 'I when 
Q-+ +x). 

s Hence, the vortex potential flow which is obtained 
at the limit does not have a discontinuity in the 

Bernoulli constant. Such a solution is not uniformly 
Fig.1 suitable close to the lines where there is a disconti- 

nuityin the vorticity. 
Let us consider the boundary layer on the boundary of the separated zone. The leading 

term in the velocity expansion in this layer is equal to the velocity of the non-viscous flow 

u (4. The leading vorticity term satisfies the equation 

Moreover, 
$ = U (s) n 

within the layer apart from higher-order terms. 

The boundary conditions for Eq.Cl.6) are 

s = 0, q < 0, 0 = - [HI 6 (11, - 0) 

‘II, > 0, 0 (0, 9) = 0 (SA, $) 
$ = 0, SE < s < SA, h, (s, 0) = 0 

q-m, O--tOm 

(1.8) 

Here, use has been made of the fact that, by virtue of the effectively non-viscous nature 

of the flow during the rotationofthe boundary layer, the profile 0 ($) does not change. 

The contact within the domain of rotation between the approach stream and the rotatingboundary 

layer leads to the appearance of a discontinuity [HI in the Bernoulli constant in this 

region. Thf_? 6-function in (1.8) is the vorticity distribution which corresponds to the 

velocity discontinuity since aH/a$ = --o, where H = ua/2$- p and p is the pressure in the 

boundary layer. Problem (1.6), (1.81, in a general formulation, has been studied in /12/*. 

(*The formula for the replacement ofthevariables at the start of Sect.2 in /12/ must have the 

form $=2&/tA, tA=t(s,,). The values of E(r) and not 100 E(T) are shown in Table 2 in 

/12/'.) It follows from the results in /12/ that its solution only exists subject to the con- 

dition 

6~ = -20, IHI 1/Re/t (sa) 

(t(s)={O(s)ds, D,=D(b,O), b=+) 
0 

(the function D (b,E) has been tabulated in /12/J. w,>O and [HI<0 in the lower half 

of the separated zone which is considered. The circulation of the velocity of the vortex 

potential flow around the lower half of the separated zone, t(sA) = o,S/2, where S is the 

overall area of both halves of the separated zone. Hence, 

0 CD= -2 [HI D,1/2Re/w,S (1.9) 

By calculating the cyclic boundary layer, it is possible to make use of the effectively 

non-viscous nature of the flow in the domain where the stream reunites and to calculate the 

remote trail and the drag of the body. By replacing the independent variable w by h-H- 

H where H, 
fo? h (s,$) 

is the Bernoulli constant in the approach stream and integrating the equation 

over the whole of the cyclic layer, it can be shown that the drag coefficient 

(which is calculated over twice the characteristic dimension) is equal to 

CD = wm2S/Re = C/Re (1.10) 

Since the magnitude of S is proportional to the square of the length and is inversely 

proportional to the length of the separated zone, we have 

C = w,~S = const (1.11) 

2. Although the flow in the scale of the body does not directly combine with the flow in 
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the scale of the separated zone, we shall pass immediately to its description as this enables 
us to determine the principal characteristics of the flow. (The subsequent analysis of the 

intermediate domains only confirmstheselfconsistency of the model). Let us assume that, in 

the limit, the flow in these domains is effectively non-viscous. This assumption will be 

confirmed after the velocity scales have been determined. The tangential discontinuity, which 

according to what has been previously said, occurs at the beginning of the separated zone, 
must be extended into all of these domains up to the body. The jump in the Bernoulli constant 
on this discontinuity is constant. Hence, in the limit, the flow in the scale of the body 
will be a flow according to the Kirchhoff scheme with the same discontinuity in the Bernoulli 
constant, IHI. (Ho [HI # A = 0. These are the parameters of the flows in the difference 
characteristic scales). The velocity at infinity in the body scale is then equal to V,, = 

v-2 [HI. The drag coefficient of the body CD = k=Vf, = -2kD [HI, where kn is the Kirchhoff 

drag coefficient. By comparing this with (l.lO), we obtain 

- IHI = Ci(2kDRe) f2.9) 

The Reynolds number, calculated using VI, and the dimensions of the body: Re, = Re 
V,, = (C RelkD)‘Iz + 00. Hence, the assumption regarding the non-viscous nature of the flow in 
the body scale and in the limit is confirmed. The flow in this scale has been described in 
detail in /l/ but the velocity and the Reynolds number must be renormalized in accordance 
with the scales indicated above. The limiting flow satisfies the Brillouin-Villat condition 
/I/ which uniquely determines kD. 

It follows from (1.9), (1.11) and (2.1) that mm = 2CD,2kD-eRe-1, S/l= ki?ReC-‘4J,-2/2. 
Then, the length of the separated zone is equal to 

(2.2) 

3. As has already been noted, the resulting structure of the flow is similar to that 
indicated in /3, 4, 14, 15/. However, no combining of the solutions in the differentcharacter- 
istic domains was carried out in these papers and even the question as to whether they could 
be combined wasnotposed. This leads to a difference in the formulation of the problem con- 
cerning the boundary layer on the boundary of the separated zone. The methods of determining 
the discontinuity in the Bernoulli constant turn out to be fundamentally different. Above, 
relationship (1.9) between 1x1, 0, and the dimensions of the separated zone is a condition 
for a solution of the boundary value problem exists for a cyclic boundary layer which 
satisfies the conditions for its combination with a non-viscous flow. A similar link was 
obtained in /14, 15/ from energy considerations. 

Let us now consider the rate of energy dissipation in greater detail. Let us instal a 
reference surface at a considerable distance from the body. According to Bobylev's formula 
(see /16/, for example), the rate of energy dissipation within the reference volume is equal 
to 

(the rate of energy dissipation is normalized using the characteristic scales). It can be 
shown that the second integral on the right tends to zero as the boundary of the reference 
volume tends to infinity. It follows from this that the magnitude of co is determined by 
expression (1.10). This suggests that the problem concerning the cyclic layer has been 
correctly formulated. At the same time, the condition that the drag coefficients calculated 
from the parameters in the remote trail and from the rate of energy dissipation should be 
the same is identically satisfied and it cannot be used as a closure relationship. 

This, however, was, in fact, done in /15/ where, instead of a cyclic boundary layer, it 
was postulated that there is ,a layer resulting from the mixing of two streams with a dis- 
continuity in the Bernoulli constant Ial which finds itself under the action of a longitudinal 
pressure gradient. In this case, the thickness of the loss of momentum in the trail depends 
on WI. The equality between the thickness of the loss of momentum inthetrail and the loss 
of momentum corresponding to the rate of energy dissipation within the separated zone served 
in /15/ to determine [HI. Moreover, in /14/ the opinion was expressed that the rate of energy 
dissipation outside of the separated zone corresponds to a "second dissipative layer" and is 
not therefore taken into account. 

The main weakness of this reasoning is the replacement of a cyclic layer by a mixing 
layer and only taking account of the rate of energy dissipation within the separated zone in 
calculating the thickness of the loss of momentum in the trail. 

So, the orders of the length and width of the separated zone, the drag coefficient of 
the body and the limting state of the flow in the scale of the separated zone were correctly, 
although not rigorously, predicted in /3, 41. In this respect, the model in /3, 4, 14, 15/ 
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does correspond to the results in the present paper. The method used for the closure of the 
models, the number of characteristic domains, the structure of the boundary layer On the 
boundary of the separated zone and the quantitative results are different. Unlike in /3, 4, 
14, 15/, the selfconsistency of the asymptotic form which has been constructed is shown in this 
paper. 

4. The constants C,a and b are defined by the solution of the problemofa vortex 
potential flow without a discontinuity in the Bernoulli constant /5/. 

The most complete data have been presented in /17/. The divergence in the results noted 
in these papers when the discontinuity in the Bernoulli constant A+0 and A = 0 was not 
confirmed in a later paper /18/, thedata in which for il = 0 are identical with the results 
in the preceding papers when A -0. 

As a result of precessing the data in /5, 17, 18/, one obtains a = 0. 463, c = C!,,?S 2 74 ‘I .I. 
and b = 0. 54.5. The ratio of the halfwidth of the separated zone, W, to its length is equal to 
0.300. Interpolating the data from /12/ and carrying out the calculation we again obtain D,z 
0.235, which is identical within the limits of the assumed accuracy (1'4). In the case of a 
circular cylinder, lzn ~0.50. Thus, in the case of a circular cylinder 

Here, the radius has been used as 

c,, = 74.9 Ro-’ (4.1) 

L = 0.393 Re, (G.2) 

0, = 33.1 Re-’ (1.3) 

INI = -74.9 Rc-’ (k-q 

TV 0.118 Re (G.3) 

the scale of length while the magnitude of CD WilS 

calculated from the diameter of the cylinder. 

One of the principal effects which are described by the theory is the retardation of the 

stream in the scale of the body under the influence of the separated zone. However, according 

to (4.4), when Re- 150, the velocity at infinity in the body scale is equal to unity, that 

is, this effect completely disappears. It is therefore difficult to anticipate that there wil 

be quantitative agreement between theory and the results of numerical calculations at the 

Reynolds number which are attained in /7/ (Re < 300). However, althouqh the nature of the 

dependence of many flow parameters on the Reynolds number changes at Rez 150, accordinq to 

the calculation, the length of the separated zone continues to increase linearly at the same 

rate. 

Fig.2 Fig.3 Fig.4 

i 

3 
t 

In Fig.2, the straight line 1 corresponds to (4.2), the broken line 2 corresponds to 

the numerical calculation of the length of the separated zone /7/, the straight line 3 corre- 

sponds to formula (4.5), the broken line 4 represents the numerical calculation of the half- 

width of the separated zone in /7/ and line 5 corresponds to the model in /2/ (W=O.Z:, Fle"'). 

According tothemodel /2/, the length of the separated zone in the notation adopted here is 

given by the formula L= 0.3QRe which is identical to (4.2) within the limits of accuracy of 

the calculation. It is seen that, when Re<150, the half-width of the separated zone corre- 

sponds to those predicted in /2/ and that it is only when ~a>150 that it begins to approach 

the asmyptotic value. The transition from the behaviour corresponding to the model in /2/ to 

the asymptotic behaviour described here is also characteristic of the other quantities. Accord- 

ing to the model in /2/, ~~-0.50 as Re-co. The numerical results (Fig.3 in which 1 rep- 

resents the results from (4.1), 2 represents the results from /7/ and 3 represents the results 

from /2/) demonstrates the tendency for cn to decrease below 0.50 when RezZSU. The results 
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in this paper also correspond to a reduction in the magnitude of the maximum in the vorticity 

on the surface of the body as Re is increased from 250 to 300 and the other features of the 

flow at the upper limit of the Reynolds numbers which are attainable in numerical calculations. 

5. Let us now consider the domain of rotation of the boundary layer. Since the scale 

of the separated layer is proportional to Re, the thickness of the boundary layer is of the 

order of unity. The boundary layer equations are no longer valid close to points A and B (Fig. 

1). As point A or point B is approached, the thickness of the boundary layer behaves as u(s)-r 

(see (1.7)). Therefore, the characteristic scale of the turning region 1, - u-1 (1,). It 

follows from the results in /19/ that U (s)- (s/Re) In (s:Re). (The number Re appears here 

because the size of the separated zone is proporitonal to Re). Consequently, 1, - 1'RFin 6. 

The velocity scale in this domain CT, - I,-' - ]/ln Re'Ro and the characteristic Reynolds number 

Re, = U,l, Re = Re. It follows from these estimates that the flow is effectively non-viscous 

in the domain under consideration. 

Furthermore, since [Wl’U,“- liln Re and oll,V, - l/in Re, the flow is potential in the 

leading term in this region. The following term in the expansion is just ln Re times smaller 

than the leading term and must be taken into account both when there is vorticity and when 

there is a discontinuity in the Bernoulli constant. The main term, a potential flow with a 

critical point, has a complex potential We = C,(z/l,)', C, = const. Here, z=s+-y where I 

and y are Cartesian coordinates, The external flow has the asymptotic form /19/ 

z,'Re 40, 05- C, (z!Re)? In (z./Re) Re 

The overlap region of these expansions is quite small. Similar situations have been 

discussed in detail in /20/. In complete analogy with /20/, wq unites with uj5 when c, = 

-C,:2 in the intermediate limit when z - Re’/a. 
The following is important in the analysis as a whole: a non-contradictory description 

of the turning zone exists and the flow in this domain is effectively non-viscous. We further 

note that there is no discontinuity in the Bernoulli constant in the recombination region. 

Hence, the characteristic "projection" which is traced so well in the results in /7/ in the 

rear part of the separated zone does not arise here. 

6. The expansion which has been constructed above is not uniformly applicable close to 

the point A at which the square of the flow velocity is comparable with [HI with respect to 

its order of magnitude which must lead to the occurrence of an unusual projection. The charac- 

teristic dimension of the corresponding region, 1,. and the velocity scale u, are connected 

by the relationship CT, - U, (L,/1J2 - (- IHl)‘lz - Re-'I%, whence 

1, - I, (In Re)-'/a - Re'/* (In Re)-1 

Since Re, = Re U,l, = Re(In Re)-1 + x7 in this domain, the flow here is effectively non- 

viscous. The scale of the stream function Yy,- (In Re)-"14. By virtue of the condition o=o 

in the cyclic layer on the axis of symmetry, 0 ($) - const$ Re-' as $ - 0. Hence, the scale 

of the vortex in the domain being considered Q, - Yy, Rem1 = Re-'(lnRe)-*. Since Q I = R e’.‘z 33 
(In Re)-2 < Re"z - U,, the flow in the main approximation in this region is also potential. As 

this flow contains the line of discontinuity in the Bernoulli constant, it involves the 

impingement of two potential flows with different Bernoulli constants. Since the potential 

of this flow tends to const (zil,)' as 211, + W) the possibility of its merging with the 

exterior region is obvious. 

7. It is impossible to achieve coalescence of the flow in the scales of the projection 

and the body since, in the body scale, the separated zone expands in proportion to ~'12 while 

a flow of the type of Chaplyqin flow /21/, which occurs in the scale of the projection, is 
proportional to x'/a. Hence, in order to complete the proof of the non-contradictory nature 
of the expansion, it is necessary to show that an intermediate zone exists which can coalesce, 
with the Kirchhoff and Chaplygin flows. The velocity scale is the same in all three zones and 

is determined by the magnitude of [HI. Consequently, the flow in the main approximation is 

effectively non-viscous. 

Let us now consider the separated potential circumfluenceofa plate which is parallel to 
the wall (Fig.4) and make the ratio of the length of the plate to the distance between the 
plate and the wall tend to zero. The flow in the scale of the plate tends to a Kirchhoff flow 
while, in the scale of the distance to the wall, it tends to a Chaplygin flow. The complex 
velocity of the flow being considered is equal to 

All the stream lines of this flow in Fig.4 were obtained numerically. 

The distance from the plate to the wall is of the order of the parameter h--too, the 
length of the plate -/z-~ while the size of the transition zone, the existence of which can 
be directly demonstrated, is -h-l. Since there is no fundamental difference between the 

splicing of the flows in the scales of the body and the projection and the splicing of the 
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domains of the flow which has just been considered, the existence of an intermediate domain is 
proved. Its longitudinal dimension is of the order of 1,'l*. The width of the separated zone 
is of the order of l,'!*. The proof of the non-contradictory nature of the theory which has been 

constructed is now complete. 

Fig.5 

8. The structure of the flow as a whole is shown in Fig.5. Here 1 is the domain of 
Kirchhoff flow, 2 is the intermediate domain (paragraph 7), 3 is the domain where the potential 
flows impinge upon one another (paragraph 6), 4 and 6 are the regions where the cyclic layer 
rotates (paragraph 5), 5 is the domain of vortex potential flow and 7 is the cyclic boundary 
layer. 

We note that the coalescence in the main term of the flows in the body scale, and in the 
scales of the intermediate domain, the region where the flow rotates and the domain where the 
flow is potential does not enable us to relate the dimensions of.the body and the separated 

zone, since the flow in the intermediate domain can be constructed for any ratio of the dimen- 

sions of the body and the scale of the projectiononly if the latter is much greater than the 
dimensions of the body. The condition that the drag coefficients calculated from the flow 

parameters in the body scale and from the parameters in the remote trail should be the same 

(formula (2.1)) was made use of above for the closure of the system of relationships. This 

conditioncannot beobtainedfrom the joining of the different domains as joining is possible 

when the condition is violated. Hence, the model which can be obtained by solely considering 

the leading terms turns out to containanarbitrary parameter. The standard method of deter- 
minining this parameter involves the construction of the higher terms of the expansion of the 

solution: the condition for their existence must enable us to remove the arbitrariness in the 

selection of the leading term. 

In many cases, similar difficulties can be successfully circumvented by establishing a 

certain property of the solution and requiring that it should be preserved on passing to the 

limit. Actually, the well-known Prandtl-Batchelor theorem on the constancy of the vorticity 

in the domain of the closed stream lines is proved in this manner. The condition that the 

drag coefficient calculated using the different methods should be constant was employed as 

such a condition in deriving (2.1). Hence, from a formal point of view, (2.1) must be con- 

sidered as the condition for the problem concerning the higher approximations to be solvable. 

It is known that the drag coefficient of a plate set up parallel to the direction of flow 

is due to the force of friction and is of the order of Re-'I', that is, it is greater than in 

the case of a plate which is perpendicular to the flow. Let us now consider the frictional 

force during the symmetric circumfluence of a wedge. As the aperture angle of the wedge is 

reduced, the Kirchhoff drag coefficient, k, decreases. At the same time, in accordance with 

(2.4), the dimensions of the separated zone also decrease while, in accordance with (2.1), 

the velocity in the body scale and, together with it, the frictional force increase. Hence, 

the results of the theory which has been described above cannot be considered as contradicting 

the well-known results for a plate which is parallel to the flow. The construction of a 

unified theory which describes the transition from one type of flow to another is an exceed- 

ingly complex problem. 

The author thanks G.Yu. Stepanov and G.C. Chernyi for discussing this paper. 
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